Toxicity screening of sediments from Lake Geneva using the freshwater ostracod *Heterocypris incongruens* (ISO 14371)

M.C. Casado-Martinez1, T. Benejam1, J.L. Loizeau2, I. Werner1, B.J.D. Ferrari1

1Centre Ecotox Eawag-EPFL; 2Institut F.-A. Forel, University of Geneva

Contact: carmen.casado@centreecotox.ch

Introduction

- **Context of the study:** In 2015 the International Commission for the Protection of Lake Geneva (CIPEL) financed a specific project to study the presence of micropollutants in surficial sediments from Lake Geneva and evaluate the risks of transfer to the zoobenthos. Project components include:
 - Physico-chemistry: ancillary parameters, metals, organic micropollutants prioritized according to substance properties and previously attested presence in Lake Geneva.
 - Macrozoobenthos: qualitative (composition of oligochaetes, insects and mollusks) and quantitative (density, biomass) indicators.
 - Paleolimnological indicators: chironomids, diatoms, microcrustaceans in sediment cores.

- **This study:**
 - screening of toxicity of sediments from 30 sites subject to extended physico-chemical characterization (blue squares in Fig. 1 below).
 - Test the effect of sample storage conditions (freezing) on the toxicity test endpoints.

Material and Methods

STUDY AREA AND SAMPLING SITES

- **Endpoints:** mortality and growth.

RESULTS AND DISCUSSION

- **TOXICITY SCREENING**
 - **Mortality (Fig. 2):**
 - Seven out of 30 samples has mortality statistically different from controls. Statistically homogeneous samples are defined by a continuous line.
 - Increasing mortality
 - 29 15 4 71 54 8 79

- **Growth inhibition (Fig. 3):**
 - Higher incidence of toxicity than for mortality endpoint, including samples with increased control-normalized mortality: 11, 22, 26, 30, 32, 33, 38, 49.
 - Low impact of toxicity threshold used for toxicity classification of samples.

- **Clustering of sites (Fig. 4) and visual representation of toxicity (visual abstract).**

- **Spatial trends in toxicity (visual abstract):**
 - Hot spots: the Haut Lac, an area closed to the Rhone mouth.
 - the Grand Lac, the deepest area, and two areas with urban influence.
 - the south-eastern part of the Petit Lac.

EFFECT OF SAMPLE STORAGE CONDITIONS

- **Direct sensitivity comparison (Fig. 5):**
 - Both mortality and growth inhibition decreased to low levels of toxicity for all samples stored frozen for approximately 6 months.
 - The exception was sample n°3, from the area impacted by the Lausanne WWTP at Vidy bay. Chemical analyses are ongoing.

![Visual abstract](image)

REFERENCES

Gent, Belgium.

(ISO 14371)